Construction of a low-cost meteorological module for data acquisition with educational and technological application

Authors

  • Tanya Estrella Torres-Valdez Universidad Tecnológica de Altamira https://orcid.org/0009-0008-1456-7573
  • Gustavo Arturo Castellanos-Guzman Tecnológico Nacional de México - Instituto Tecnológico de Ciudad Madero
  • Pedro Nava-Diguero Universidad Tecnológica de Altamira
  • Francisco Manuel Garcia-Reyes Tecnológico Nacional de México - Instituto Tecnológico de Ciudad Madero

DOI:

https://doi.org/10.63728/riisds.v11i1.135

Abstract

This research focuses on the design and construction using low-cost elements of a module for the acquisition of data measuring air quality and as a meteorological station in the industrial port area of Altamira, the module was built using a carbon steel pipe mast 1-¼” schedule 30 of 2 meters, the monitoring elements were kept in a metallic container to protect them from the environment. During monitoring, measurements of humidity, temperature, atmospheric pressure, altitude, concentration of particles in the air, carbon dioxide (CO2), and an Arduino Uno was used as a controller.

References

Arıkan et al, İ. D. (2025). Air Quality of Bursa: Temporal and Spatial Evaluation of PM10, PM2.5, NO2 and SO2 Pollutants Using IDW Geostatistical Technique. Doğal Afetler Ve Çevre Dergisi 11(1), 181-193. doi:https://doi.org/10.21324/dacd.1562860

Broday, D. M. (2011). Interurban differences in air pollution and related health effects in Israel. Atmospheric Environment, 45(34), 6059–6066. doi:https://doi.org/10.1016/j.atmosenv.2011.07.060

Castell et al, N. D. (2015). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99,, 293-302. doi:https://doi.org/10.1016/j.envint.2016.12.007

Castellini, J. B. (2021). Development of low-cost air quality monitoring systems for urban environments. Sensors, 21(11), 3792. doi: https://doi.org/10.3390/s21113792

Enríquez Hernández, J. A. (2018). Ecomentes, Resl social Ecológica . Revista Interdisciplinaria de Ingenieria Sustentable y Desarrollo Social, 40-50.

Flores et al, E. C. (2023). Diseño e implementación de un Sistema de Gestión Ambiental basado en la norma ISO 14001:2015. Revista Interdisciplinaria de Ingenieria Sustentavle y Desarrollo Social, 605-620.

García, A. M. (2021). Integración tecnológica en proyectos sustentables: caso de estaciones meteorológicas automatizadas. Ingeniería e Investigación,, 41(2), 120–130. doi:https://doi.org/10.15446/ing.investig.v41n2.95177

Hasenfratz, D. S. (2012). Participatory air pollution monitoring using smartphones. Mobile Sensing,, 1(1), 1–5.

Holstius, D. M. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques 7(4), 1121–1131. doi:https://doi.org/10.5194/amt-7-1121-2014

Instruments, D. (20 de 06 de 2025). Davis I. Obtenido de https://www.davisnet.dk/pub/media/pdf/6152_62_53_63_SS.pdf?srsltid=AfmBOopIXI22tzkM8AtoUp-g41KPG408iWzJHlGi79xceAQdYtZpERN3

Lewis, A. &. (2016). Validate personal air-pollution sensors. Nature, 535(7610), 29-31. doi:https://doi.org/10.1038/535029a

Losada, R. I. (2015). Efectos del cambio climático en la costa de América Latina y el Caribe. Dinamicas, tendencias y variabilidad climatica. Santiago de chile: Naciones Unidas. Obtenido de https://repositorio.cepal.org/server/api/core/bitstreams/985ec80f-27ba-408a-90fd-d86fbd969e4b/content

Mead et al, M. I. (2013). The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. tmospheric Environment, 70,, 186–203. doi: https://doi.org/10.1016/j.atmosenv.2012.11.060

Morawska, L. T.-S. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286–299. doi:https://doi.org/10.1016/j.envint.2018.04.018

Nasser et al, K. M.-A. (2025). The Role of Public Health Awareness in Disease Prevention: A Critical Analysis. The Bioscan, 204-208. doi:https://doi.org/10.63001/tbs.2025.v20.i01.pp204-208

ONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Naciones Unidas. Obtenido de https://www.un.org/sustainabledevelopment/es/agenda-2030/

Rai et al, A. C. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of the Total Environment, 607-608, 691-705. doi:https://doi.org/10.1016/j.scitotenv.2017.06.266

Rodrigues et al, Y. S. (2025). Relação entre poluição ambiental e doenças transmitidas por vetores. REVISTA OBSERVATORIO DE LA ECONOMIA LATINOAMERICANA, 1-14. doi:https://doi.org/10.55905/oelv23n1-140

Scientific, C. (20 de 06 de 2025). ProfEC|Ventus. Obtenido de https://shop.profec-ventus.com/images/Datasheets/Data_loggers/SCI/CR1000Xe/b_cr1000xe_datasheet.pdf

Shop, O. S. (19 de 06 de 2025). One Stop Wind Shop. Obtenido de https://shop.profec-ventus.com/index.php?cat=c48_Meteorological-Sensor-meteorological-sensor.html

Spinelle et al, L. G. (2017). Field calibration of a cluster of low-cost available sensors for air quality monitoring. Particulate Science and Technology, 35(5),, 499–509. doi:https://doi.org/10.1080/02726351.2016.1239285

Published

2025-08-21

How to Cite

Torres-Valdez, T. E., Castellanos-Guzman, G. A., Nava-Diguero, P., & Garcia-Reyes, F. M. (2025). Construction of a low-cost meteorological module for data acquisition with educational and technological application. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 11(1), 87–100. https://doi.org/10.63728/riisds.v11i1.135