Importancia de la gestión del pastoreo sobre la ecología del suelo
DOI:
https://doi.org/10.63728/riisds.v11i1.170Palabras clave:
cambio climático, ciclado de nutrientes, estabilidad, macro y mesofaunaResumen
La ecología de las tierras de pastoreo está influenciada por la salud del suelo. Esta revisión ofrece información resumida de estudios sobre como un manejo adecuado de las practicas de pastoreo mejora las propiedades del suelo como son la infiltración de agua, la producción de materia orgánica, el secuestro de carbono, nitrógeno y el ciclo de diferentes nutrientes. En esta revisión se analizan los impactos de estrategias de manejo que se utilizan frecuentemente en tierras de pastoreo, incluyendo ajuste de carga animal y sistemas de pastoreo. En general, la implementación de buenas prácticas de manejo y un ajuste de carga animal de liviano a moderado y un sistema de pastoreo rotativo, tiende a beneficiar las propiedades del suelo. Por tal motivo, se debe de considerar un plan de manejo integrado para mejorar la salud del suelo y la productividad del ecosistema. Esta revisión proporciona un conocimiento general sobre cómo la gestión de las tierras de pastoreo afecta los procesos edáficos relacionados con la salud del suelo.
Citas
Almeida, T. F., Carvalho, J. K., Reid, E., Martins, A. P., Bissani, C. A., Bortoluzzi, E. C., & Tiecher, T. (2021). Forms and balance of soil potassium from a long-term integrated crop-livestock system in a subtropical Oxisol. Soil and Tillage Research, 207, 104864.
Apfelbaum, S. I., Thompson, R., Wang, F., Mosier, S., Teague, R., & Byck, P. (2022). Vegetation, water infiltration, and soil carbon response to Adaptive Multi-Paddock and Conventional grazing in Southeastern USA ranches. Journal of Environmental, 308, 114576. https://doi.org/10.1016/j.jenvman.2022.114576
Assman, J. M., Martins, A. P., Anghinoni, I., de Oliveira-Denardin, L. G., de Holanda-Nichel, G., de Andrade-Costa, S. E. V., & Franzluebbers, A. J. (2017). Phosphorus and potassium cycling in a long-term no-till integrated soybean-beef cattle production system under different grazing intensities insubtropics. Nutrient Cycling in Agroecosystems, 108(1), 21–33. https://doi.org/10.1007/S10705-016-9818-6
Augustine, D. J., Derner, J. D., Fernández-Giménez, M. E., Porensky, L. M., Wilmer, H., & Briske, D. D. (2020). Adaptive, multipaddock rotational grazing management: a ranch-scale assessment of effects on vegetation and livestock performance in semiarid rangeland. Rangeland Ecology & Management, 73(6), 796–810. https://doi.org/https://doi.org/10.1016/j.rama.2020.07.005
Azcón-Aguilar, C., & Barea, J. M. (2015). Nutrient cycling in the mycorrhizosphere. Nutrient Cycling in the Mycorrhizosphere, 15(2), 372–396. https://doi.org/http://dx.doi.org/10.4067/S0718-95162015005000035
Beltrán-Burboa, C. E., Pollorena-López, G., & Graciano-Obeso, A. (2023). Efecto del vuelo de un dron sobre la polinización de cultivo de fresa en casa sombra como alternativa a la ausencia de polinizadores naturales. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 9(1), 380–389. https://doi.org/10.63728/riisds.v9i1.124
Bengough, A. G., Loades, K., & McKenzie, B. M. (2016). Root hairs aid soil penetration by anchoring the root surface to pore walls. Journal of Experimental Botany, 67(4), 1071–1078. https://doi.org/https://doi.org/10.1093/jxb/erv560
Bieluczyk, W., De Cássia, P. M., Pereira, M. G., De Moraes, M. T., Soltangheisi, A., De Campos, A. C., & Cherubin, M. R. (2020). Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma, 371, 114368. https://doi.org/https://doi.org/10.1016/j.geoderma.2020.114368
Byrnes, R. C., Eastburn, D. J., Tate, K. W., & Roche, L. M. (2018). A global meta‐analysis of grazing impacts on soil health indicators. Journal of Environmental Quality, 47(4), 758–765. https://doi.org/10.2134/jeq2017.08.0313
Carpinelli, S., da Fonseca, A. F., Weirich-Neto, P. H., Dias, S. H. B., & Pontes, L. D. S. (2020). Spatial and temporal distribution of cattle dung and nutrient cycling in integrated crop–livestock systems. Agronomy, 10(5), 1–20. https://doi.org/10.3390/agronomy10050672
Carstensen, A., Herdean, A., Schmidt, S. B., Sharma, A., Spetea, C., Pribil, M., & Husted, S. (2018). The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology, 177(1), 271–284. https://doi.org/10.1104/pp.17.01624
Cecagno, D., Gomes, M. V., De Andrade, S. E., Martins, A. P., De Oliveira, D. L., Bayer, C., & Faccio, C. P. (2018). Soil organic carbon in an integrated crop-livestock system under different grazing intensities. Revista Brasileira de Ciência Agrárias, 13(3), 1–7. https://doi.org/https://doi.org/10.5039/agraria.v13i3a5553
Chen, M., & Shi, J. (2018). Effect of rotational grazing on plant and animal production. Mathematical Biosciences and Engineering, 15(2), 393–406. https://doi.org/10.3934/MBE.2018017
Conant, R. T., Cerri, C. E., Osbome, B. B., & Paustian, K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Application, 27(2), 662–668. https://doi.org/10.1002/eap.1473
Cotler, H., Martínez, M., & Etchevers, J. D. (2016). Carbono orgánico en suelos agrícolas de México: Investigación y políticas públicas. Terra Latinoamericana, 34(1), 125–138.
Dlamini, P., Chivenge, P., & Chaplot, V. (2016). Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agriculture, Ecosystems & Environment, 221, 258–269. https://doi.org/10.1016/j.agee.2016.01.026
Döbert, T. F., Bork, E. W., Apfelbaum, S., Carlyle, C. N., Chang, S. X., Khatri-Chhetri, U., & Boyce, M. S. (2021). Adaptive multi-paddock grazing improves water infiltration in Canadian grassland soils. Geoderma, 401, 115314. https://doi.org/10.1016/j.geoderma.2021.115314
Dong, L., Zheng, Y., Martinsen, V., Liang, C., & Mulder, J. (2022). Effect of Grazing Exclusion and Rotational Grazing on Soil Aggregate Stability in Typical Grasslands in Inner Mongolia, China. Frontiers in Environmental Science, 10, 844151. https://doi.org/10.3389/FENVS.2022.844151/FULL
Dubeux, J. C., & Sollenberger, L. E. (2020). Nutrient cycling in grazed pastures. Management Strategies for Sustainable Cattle Production in Southern Pastures, 59–75. https://doi.org/https://doi.org/10.1016/B978-0-12-814474-9.00004-9
El Mujtar, V., Muñoz, N., Mc Cormick, B.P., Pulleman, M. and Tittonell, P. 2019. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Global Food Security 20: 132-144. https://doi.org/10.1016/j.gfs.2019.01.007.
Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk, C., Mayer, A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land use. In Social ecology: Society-nature relations across time and space (1ra eds), 295-313. Cham: Springer International Publishing.
Follett, R. F., & Reed, D. A. (2010). Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland ecology & management, 63(1), 4-15. https://doi.org/10.2111/08-225.1
Galván, C. H. A., Guardado, R. H. B., Álvarez, F. A., & Puente, E. O. R. (2018). Uso sustentable de agostaderos y el sistema vaca-cría en el Noroeste de México. Agronomia Mesoamericana, 29(2), 433–447. https://doi.org/10.15517/ma.v29i2.29185
Garcia, L., Dubeux, C. B., Sollenberger, L. E., Vendramini, M. B., Dilorenzo, N., Santos, R. S., Jaramillo, M., & Ruiz-Moreno, M. (2021). Nutrient excretion from cattle grazing nitrogen‐fertilized grass or grass–legume pastures. Agronomy Journal, 113(4), 3110–3123. https://doi.org/10.1002/agj2.20675
Garcia, R. A., Crusciol, C. A. C., Calonego, J. C., & Rosolem, C. A. (2008). Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy, 28(4), 579–585. https://doi.org/https://doi.org/10.1016/j.eja.2008.01.002
Ge, T., Liu, C., Yuan, H., Zhao, Z., Wu, X., Zhu, Z., Brookes, P., & Wu, J. (2015). Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant and Soil, 392(1–2), 17–25. https://doi.org/10.1007/S11104-014-2265-8
Ge, T., Yuan, H., Zhu, H., Wu, X., Nie, S., Liu, C., & Brookes, P. (2012). Biological carbon assimilation and dynamics in a flooded rice–soil system. Soil Biology and Biochemistry, 48, 39–46. https://doi.org/https://doi.org/10.1016/j.soilbio.2012.01.009
Graciano-Obeso, A., Báez-Higuera, J. A., & López-Atondo, J. U. (2023). Conocimiento de la Agenda 2030 y Objetivos de Desarrollo Sostenible en estudiantes de educación superior. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 9(1), 326–335. https://doi.org/10.63728/riisds.v9i1.120
Gray, C. W., Ghimire, C. P., McDowell, R. W., & Muirhead, R. W. (2022). The impact of cattle grazing and treading on soil properties and the transport of phosphorus, sediment and E. coli in surface runoff from grazed pasture. New Zealand Journal of Agricultural Research, 65(6), 445–462. https://doi.org/10.1080/00288233.2021.1910319
Hobbie, S. E. (2015). Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution, 30(6), 357–363. https://doi.org/10.1016/j.tree.2015.03.015
Hou, E., Chen, C., Luo, Y., Zhou, G., Kuang, Y., Zhang, Y., Heenan, M., Lu, X., & Wen, D. (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24(8), 3344–3356. https://doi.org/10.1111/gcb.14093
Jeffery, S., Harris, J. A., Rickson, R. J., & Ritz, K. (2009). The spectral quality of light influences the temporal development of the microbial phenotype at the arable soil surface. Soil Biology And, 41(3), 553–560. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.12.014
Kazemi, S. M., Karimzadeh, H., Tarkesh, E. M., & Bashari, H. (2018). Effects of long-term exclosure and rest-rotation grazing system on some soil physicochemical properties in semi-arid rangelands (Case study: semi-steppe rangelands. Iranian Journal of Range and Desert Research, 25(3), 536–546. https://doi.org/https://doi.org/10.22092/ijrdr.2018.117805
Khasi, Z., Askari, M. S., Amanifar, S., & Moravej, K. (2024). Assessing soil structural quality as an indicator of productivity under semi-arid climate. Soil and Tillage Research, 236, 105945. https://doi.org/https://doi.org/10.1016/j.still.2023.105945
Khatri-Chhetri, U., Banerjee, S., Thompson, K. A., Quideau, S. A., Boyce, M. S., Bork, E. W., & Carlyle, C. N. (2024). Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. Science of the Total Environment, 912, 169353. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.169353
Khatri-Chhetri, U., Thompson, K. A., Quideau, S. A., Boyce, M. S., Chang, S. X., Kaliaskar, D., & Carlyle, C. N. (2022). Adaptive multi-paddock grazing increases soil nutrient availability and bacteria to fungi ratio in grassland soils. Applied Soil Ecology, 179, 104590. https://doi.org/https://doi.org/10.1016/j.apsoil.2022.104590
Koppe, E., Rupollo, C. Z., de Queiroz, R., Puschmann, D. U., Peth, S., & Reinert, D. (2021). Physical recovery of an oxisol subjected to four intensities of dairy cattle grazing. Soil and Tillage Research, 206, 104813. https://doi.org/https://doi.org/10.1016/j.still.2020.104813
Lai, L., & Kumar, S. (2020). A global meta-analysis of livestock grazing impacts on soil properties. PloS One, 15(8), e0236638. https://doi.org/10.1371/JOURNAL.PONE.0236638
Lambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annual Review of Plant Biology, 73, 17–42. https://doi.org/10.1146/ANNUREV-ARPLANT-102720-125738
Lawrence, R., Whalley, R. D. B., Reid, N., & Rader, R. (2019). Short-duration rotational grazing leads to improvements in landscape functionality and increased perennial herbaceous plant cover. Agriculture, Ecosystems & Environment, 281, 134–144. https://doi.org/https://doi.org/10.1016/j.agee.2019.04.031
Li, Y., Liu, Y., Pan, H., Hernández, M., Guan, X., Wang, W., Zhang, Q., Luo, Y., Di, H., & Xu, J. (2020). Impact of grazing on shaping abundance and composition of active methanotrophs and methane oxidation activity in a grassland soil. Biology and Fertility of Soils, 56(6), 799–810. https://doi.org/10.1007/S00374-020-01461-0
Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., & Zeng, G. (2017). Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research, 166, 1–9. https://doi.org/10.1016/j.still.2016.10.004
Liu, Y., Cui, Z., Huang, Z., López-Vicente, M., & Wu, G. L. (2019). Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 182, 104147. https://doi.org/10.1016/j.catena.2019.104147
Loizeau, S., Rossier, Y., Gaudet, J. P., Refloch, A., Besnard, K., Angulo-Jaramillo, R., & Lassabatere, L. (2017). Water infiltration in an aquifer recharge basin affected by temperature and air entrapment. Journal of Hydrology and Hydromechanics, 65(3), 222–233. https://doi.org/10.1515/johh-2017-0010
Lyu, Y., Tang, H., Li, H., Zhang, F., Rengel, Z., Whalley, W. R., & Shen, J. (2016). Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 7, 1–15. https://doi.org/10.3389/FPLS.2016.01939/FULL
Ma, Q., Wen, Y., Wang, D., Sun, X., Hill, P. W., Macdonald, A., & Jones, D. L. (2020). Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biology and Biochemistry, 144, 107760. https://doi.org/https://doi.org/10.1016/j.soilbio.2020.107760
Marin-Díaz, B., Govers, L. L., van Der Wal, D., Olff, H., & Bouma, T. J. (2021). How grazing management can maximize erosion resistance of salt marshes. Journal of Applied Ecology, 58(7), 1533–1544. https://doi.org/10.1111/1365-2664.13888
Márquez-Godoy, J. N., & González-Escobedo, R. (2022). Tecnologías ómicas para la exploración de la biocostra del suelo. Terra Latinoamericana, 40, 1–13. https://doi.org/https://doi.org/10.28940/terra.v40i0.1062
Mengel, K. (2016). Potassium (C. Press (ed.); 1st ed.). https://www.taylorfrancis.com/chapters/edit/10.1201/9781420014877-7/potassium-konrad-mengel
Milazzo, F., Francksen, R. M., Abdalla, M., Ravetto Enri, S., Zavattaro, L., Pittarello, M., & Vanwalleghem, T. (2023). An overview of permanent grassland grazing management practices and the impacts on principal soil quality indicators. Agronomy, 13(5), 1366. https://doi.org/10.3390/agronomy13051366
Mitchard, E. T. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2
Mo, Q., Li, Z. A., Sayer, E. J., Lambers, H., Li, Y., Zou, B. I., & Wang, F. (2019). Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Functional Ecology, 33(3), 503–513. https://doi.org/10.1111/1365-2435.13252
Mostofa, M. G., Rahman, M. M., Ghosh, T. K., Kabir, A. H., Abdelrahman, M., Khan, M. A. R., & Tran, L. S. P. (2022). Potassium in plant physiological adaptation to abiotic stresses. Plant Physiology and Biochemistry, 186, 279–289. https://doi.org/https://doi.org/10.1016/j.plaphy.2022.07.011
Mouhamad, R., Alsaede, A., & Iqbal, M. (2016). Behavior of potassium in soil: a mini review. Chemistry International, 2(1), 58–69. https://doi.org/10.13140/RG.2.1.4830.7041
Munkholm, L. J., Heck, R. J., Deen, B., & Zidar, T. (2016). Relationship between soil aggregate strength, shape and porosity for soils under different long-term management. Geoderma, 268, 52–59. https://doi.org/10.1016/j.geoderma.2016.01.005
Odadi, W. O., Fargione, J., & Rubenstein, D. I. (2017). Vegetation, wildlife, and livestock responses to planned grazing management in an African pastoral landscape. Degradation & Development, 28(7), 2030–2038. https://doi.org/10.1002/ldr.2725
Öllerer, K., Varga, A., Kirby, K., Demeter, L., Biró, M., Bölöni, J., & Molnár, Z. (2019). Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biological Conservation, 237, 209–219. https://doi.org/10.1016/j.biocon.2019.07.007
Paustian, K., Larson, E., Kent, J., Marx, E., & Swan, A. (2019). Soil C Sequestration as a Biological Negative Emission Strategy. Frontiers in Climate, 1, 1–11. https://doi.org/10.3389/FCLIM.2019.00008/FULL
Paz-Kagan, T., Ohana-Levi, N., Herrmann, I., Zaady, E., Henkin, Z., & Karnieli, A. (2016). Grazing intensity effects on soil quality: A spatial analysis of a Mediterranean grassland. Catena, 146, 100–110. https://doi.org/10.1016/j.catena.2016.04.020
Petri, M., Batello, C., Villani, R., & Nachtergaele, F. (2010). Carbon status and carbon sequestration potential in the world’s grasslands. Integrated Crop Management, 11, 19–31.
Poeplau, C. (2021). Grassland soil organic carbon stocks along management intensity and warming gradients. Grass and Forage Science, 76(2), 186–195. https://doi.org/10.1111/gfs.12537
Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture ((eds)). Springer India. https://doi.org/10.1007/978-81-322-2776-2_17
Saccá, M. L., Barra-Caracciolo, A., Di Lenola, M., & Grenni, P. (2017). Ecosystem services provided by soil microorganisms (Springer (ed.); 1 eds). Springer International Publishing. https://doi.org/10.1007/978-3-319-63336-7_2
Sardans, J., & Peñuelas, J. (2015). Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 24(3), 261–275. https://doi.org/10.1111/geb.12259
Schmalz, H. J., Taylor, R. V., Johnson, T. N., Kennedy, P. L., DeBano, S. J., Newingham, B. A., & McDaniel, P. A. (2013). Soil morphologic properties and cattle stocking rate affect dynamic soil properties. Rangeland Ecology & Management, 66(4), 445–453. https://doi.org/10.2111/REM-D-12-00040.1
Schmitz, A., & Isselstein, J. (2020). Effect of grazing system on grassland plant species richness and vegetation characteristics: Comparing horse and cattle grazing. Sustainability, 12(8), 3300. https://doi.org/10.3390/su12083300
Simpson, R. J., Stefanski, A., Marshall, D. J., Moore, A. D., & Richardson, A. E. (2015). Management of soil phosphorus fertility determines the phosphorus budget of a temperate grazing system and is the key to improving phosphorus efficiency. Agriculture, Ecosystems and Environment, 212, 263–277. https://doi.org/https://doi.org/10.1016/j.agee.2015.06.026
Sun, G., Zhu-Barker, X., Chen, D., Liu, L., Zhang, N., Shi, C., He, L., & Lei, Y. (2017). Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: An implication for pasture management. Plant and Soil, 416(1–2), 515–525. https://doi.org/10.1007/S11104-017-3236-7
Teague, R., & Kreuter, U. (2020). Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Frontiers in Sustainable Food Systems, 4, 534187. https://doi.org/10.3389/FSUFS.2020.534187/FULL
Teague, W. R., Dowhower, S. L., Baker, S. A., Ansley, R. J., Kreuter, U. P., Conover, D. M., & Waggoner, J. A. (2010). Soil and herbaceous plant responses to summer patch burns under continuous and rotational grazing. Agriculture, Ecosystems & Environment, 137(1–2), 113–123. https://doi.org/10.1016/j.agee.2010.01.010
Teague, W. R., Dowhower, S. L., Baker, S. A., Haile, N., DeLaune, P. B., & Conover, D. M. (2011). Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystems & Environment, 141(3–4), 310–322. https://doi.org/10.1016/j.agee.2011.03.009
Vertès, F., Delaby, L., Klumpp, K., & Bloor, J. (2019). C–N–P uncoupling in grazed grasslands and environmental implications of management intensification. Agroecosystem Diversity, 15–34. https://doi.org/https://doi.org/10.1016/B978-0-12-811050-8.00002-9
Viglizzo, E. F., Ricard, M. F., Taboada, M. A., & Vázquez-Amábile, G. (2019). Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Science of the Total Environment, 661, 531–542. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.01.130
Villa-Herrera, A., Paz-Pellat, F., Pérez-Hernández, M. J., Rojas-Montes, C., Rodríguez-Arvizu, M., Ortiz-Acosta, S., Casiano-Domínguez, M., & Díaz-Solís, H. (2014). Estimación de la capacidad de carga animal en agostaderos usando un índice de vegetación de pendientes normalizadas. Agrociencia, 48(6), 599–614.
Wang, Z., Jiang, S., Struik, P. C., Wang, H., Jin, K., Wu, R., & Ta, N. (2023). Plant and soil responses to grazing intensity drive changes in the soil microbiome in a desert steppe. Plant and Soil, 491(1–2), 219–237. https://doi.org/10.1007/s11104-022-05409-1
Xia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953. https://doi.org/https://doi.org/10.1016/j.soilbio.2020.107953
Xu, S., Jagadamma, S., & Rowntree, J. (2018). Response of grazing land soil health to management strategies: a summary review. Sustainability, 10(12), 4769. https://doi.org/10.3390/su10124769
Yadav, A. N., Kour, D., Kaur, T., Devi, R., Yadav, A., Dikilitas, M., & Saxena, A. K. (2021). Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatalysis and Agricultural Biotechnology, 33, 102009. https://doi.org/https://doi.org/10.1016/j.bcab.2021.102009
Yang, X., Chen, X., & Yang, X. (2019). Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 187, 85–91. https://doi.org/https://doi.org/10.1016/j.still.2018.11.016
Zhan, T., Zhang, Z., Sun, J., Liu, M., Zhang, X., Peng, F., & Fu, S. (2020). Meta-analysis demonstrating that moderate grazing can improve the soil quality across China's grassland ecosystems. Applied Soil Ecology, 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438
Zhang, M., Li, X., Wang, H., & Huang, Q. (2018). Comprehensive analysis of grazing intensity impacts soil organic carbon: A case study in typical steppe of Inner Mongolia, China. Applied Soil Ecology, 129, 1–2. https://doi.org/https://doi.org/10.1016/j.apsoil.2018.03.008
Zhang, X., Zhang, W., Sai, X., Chun, F., Li, X., & Wang, H. (2022). Grazing altered soil aggregates, nutrients and enzyme activities in a Stipa kirschnii steppe of Inner Mongolia. Soil and Tillage Research, 219, 105327. https://doi.org/https://doi.org/10.1016/j.still.2022.105327
Zhao, F., Ren, C., Shelton, S., Wang, Z., Pang, G., Chen, J., & Wang, J. (2017). Grazing intensity influence soil microbial communities and their implications for soil respiration. Agriculture, Ecosystems & Environment, 249, 50–56. https://doi.org/https://doi.org/10.1016/j.agee.2017.08.007
Zhao, X., Lin, Q., & Li, B. (2002). The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiologica Sinica, 42(2), 236–241. https://europepmc.org/article/med/12557403
Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., & Hosseinibai, S. (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta‐analysis. Global Change Biology, 23(3), 1167–1179. https://doi.org/10.1111/gcb.13431
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Interdisciplinaria de Ingeniería Sustentable y Desarrollo Social

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.