Development of a composite reinforced with orange peel fiber with the Triz methodology

Authors

  • C.E. Hernández-San-Juan Tecnológico Nacional de México - Instituto Tecnológico Superior de Álamo Temapache
  • M.L. Méndez-Hernández Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca
  • L. Cruz-Rivero Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca
  • D. Ángeles-Herrera Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca
  • F. Hernández-Lorenzo Empresa BACHOCO, Papantla, Veracruz, México

DOI:

https://doi.org/10.63728/riisds.v7i1.201

Keywords:

TRIZ, Composite, Polyester Resin, FTIR, DSC

Abstract

In 2019, Mexico reached a production of 4.736 millions of tons of oranges, ranking fifth in world production. The state of Veracruz was the first producer nationwide, with 44.7% of the production volume (SIAP, 2020). The municipality of Álamo-Temapache, considered the “golden valley of the orange”, generates approximately 648 thousand tons of agro-industrial waste per year. The objective of this research was to obtain a composite reinforced with orange peel fiber (Citrus sinensis), with mechanical properties similar to a commercial resin, with the application of the TRIZ methodology. 0%, 13% and 25% by weight of valence orange peel fiber and two types of isophthaltic (RPI) and orthophthalic (RPO) resin were used to obtain the composite. The matrix of contradictions helped to identify the solution to the problem by analyzing the parameters that need to be improved and the one that worsens, replacing a certain percentage of orange peel fiber instead of the polyester polymer. The physicochemical properties were analyzed by FTIR, the thermal degradation by DSC and physical-mechanical properties (tension-elongation), observing that the RPO has a greater elasticity than the RPI and that additionally when adding 25% by weight of husk fiber orange you get higher tension. In general, the value of the glass transition temperature (Tg) value was modified according to the content of the percentage of orange peel fiber in the resin decreasing when the content increases, due to a better interaction between soft segments of the RPO resin and RPI.

References

Camposo A., Salgado, F., Garcia, F., Souza, M., souza, E., Colorado, H., Neves, S.(2019). Evaluation of the Projectile's loss of Energy in Polyester Composite Reinforced with Fique Fiber and Fabric. Materials Research. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2019-0146

Chou, (2014). An ARIZ-based life cycle engineering model for eco-design. Journal of Cleaner Production. Pag. 210-223. http://dx.doi.org/10.1016/j.jclepro.2013.11.037

Cordova, C., Guillén, J. & Tuesta, T. (2020). Solvent free microwave extraction of orange essential oil (Citrus sinensis), and the effect of the process conditions in its yield, composition and antimicrobial activity. Rev Chil Nutr, 47(6): 965-974. http://dx.doi.org/10.4067/S0717-75182020000600965.

Domingos, I., Ferreira, J., Crus-Lopes, L., and Esteves, B. (2019). Polyurethane foams from liquefied orange peel wastes. Food and Bioproducts Processing, 115: 223-229.

Elanchezhian, C., Vijaya, B., Ramakrishnan, G., Rajendrakumar, M., Naveenkumar, V. & Saravanakumar, M. (2016). Review on mechanical properties of natural fiber composites. Materials Today: Proceedings 5 (2018) 1785–1790

Frizziero, L., Francia, D., Donnici, G., Liverani, A., & Caligiana, G. (02 de Enero de 2018). Sustainable design of open molds with QFD and TRIZ combination. Journal of Industrial and Production Engineering, 35(1), 21 - 31, https://doi.org/10.1080/21681015.2017.1385543

Garrido, K., Rivas, B., Perez, M., Fernandez, J., Monclus, M., Peña, C.(2020). Mechanical and morphological properties of poly(3-hydroxybutyrate)-thermoplastic starch/clay/eugenol bionanocomposites. J. Chil. Chem. Soc., 65, N°4

Hamidon, M.H., Sultan, M.T.H., Ariffin, A.H., and Shah, A.U.M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. Journals of materials research and technology, 8(3): 3327–3337.

Ilevbare, I., Probert, D., Phaal, R., (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation 33 pag. 30–37. http://dx.doi.org/10.1016/j.technovation.2012.11.003

Ishak, N. M., Sivakumar, D. & Mansor, M. R. (2018). The application of TRIZ on natural fibre metal laminate to reduce the weight of the car front hood. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40:105. https://doi.org/10.1007/s40430-018-1039-2

Pulido, H., Hernández, E., Rabelero, M., Sanjuan, RJ. & Jasso C.F. ( 2014). Valoración mecanotérmica de una resina biodegradable como agente de acoplamiento de materiales compuestos celulósicos/polímero hidrofóbico. Maderas. Ciencia y Tecnología, vol. 16, núm. 4, 2014, pp. 463-486. DOI:10.4067/S0718-221X2014005000038

Rahim, Z.A., Sheng, I.L.S. & Bakar, N.A. (2015). TRIZ Methodology for Applied Chemical Engineering: A Case Study of New Product Development, Chemical Engineering Research and Design (2015), http://dx.doi.org/10.1016/j.cherd.2015.08.027

SIAP. (2020). Servicio de Información Agroalimentaria y Pesquera. SAGARPA: México.

Singh, J. (2020). Natural Fibers: Applications. Generation, Development and Modifications of Natural Fibers. Intech open. Doi: http://dx.doi.org/10.5772/intechopen.86884

Velásquez, S., Pelaéz, G., Giraldo, D., (2016). Uso de fibras vegetales en materiales compuestos de matriz polimérica: una revisión con miras a su aplicación en el diseño de nuevos productos. Informador Técnico (Colombia) 80(1) enero - junio 2016: 77-86

Yusof, N., Sapuan, S., Sultan, M. & Jawaid, M. (2020). Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach. Journal of Central South University, 27(1): 64−75. Doi: https://doi.org/10.1007/s11771-020-4278-1.

Published

2021-12-17

How to Cite

Hernández-San-Juan, C., Méndez-Hernández, M., Cruz-Rivero, L., Ángeles-Herrera, D., & Hernández-Lorenzo, F. (2021). Development of a composite reinforced with orange peel fiber with the Triz methodology. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 7(1), 347–366. https://doi.org/10.63728/riisds.v7i1.201