3D Printing as an Alternative for Human Prostheses. Review Article
DOI:
https://doi.org/10.63728/riisds.v7i1.174Keywords:
tridimensional technology printing, hands prosthetics, ocular prosthetics, additive manufacturing, computer-aided designAbstract
3D printing technology has found innovative applications in the medical field, especially in the human prosthesis development because of its adaptability to the patients´ needs. A lot of people around the world need prosthesis and only 0.5 % is able to get one. Prostheses made in a 3D printer can cost up to 50% less than a normal prosthesis. The 3D printing prosthesis emerged as an alternative for people that had suffered an amputation or a disease. Despite all the great advantages of the additive manufacturing, there are limitations in the prostheses production using 3D printing: the size of the printed object depends on the size of the printer and, additionally, the range of potential materials to be used is quite limited. This work aims to review scientific articles, that document the use of 3D printing as an alternative for the development of low-cost prostheses. This article focused on prosthetic of hands, feet, ears, eyes, and jaws, it also describes the materials (polyvinyl alcohol and poly lactic acid) and techniques (binder jetting, directed energy deposition, extrusion, powder bed fusion, and sheet lamination) that are typically employed for its fabrication. The polymers used in those kinds of printed prostheses could be replaced quickly and at a lower cost, and they are adaptable to the patient needs. The kids are the most benefited by 3D printed hands and arms prostheses because they frequently need to replace their prostheses as they grow. Although the fabrication time of prosthetics 3D printing is lower than the regular process, the quality of the material and the specific manufacturing techniques, guarantee a high-quality prosthesis.
References
Alpízar, B. G., & Valladares, M. C. (2012). Prótesis totales y lesiones bucales en adultos mayores institucionalizados. Revista Finlay, 2(1), 32-44.
Belter, J. T., Reynolds, B. C., & Dollar, A. M. (2014, August). Grasp and force baed taxonomy of split-hook prosthetic terminal devices. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6613-6618). IEEE.
Cabibihan, J. J., Alkhatib, F., Mudassir, M., Lambert, L. A., Al-Kwifi, O. S., Diab, K., & Mahdi, E. (2021). Suitability of the Openly Accessible 3D Printed Prosthetic Hands for War-Wounded Children. Frontiers in Robotics and AI, 7, 207.
César-Juárez, Á. A., Olivos-Meza, A., Landa-Solís, C., Cárdenas-Soria, V. H., Silva-Bermúdez, P. S., Suárez Ahedo, C., ... & Ibarra-Ponce de León, J. C. (2018). Uso y aplicación de la tecnología de impresión y bioimpresión 3D en medicina. Revista de la Facultad de Medicina (México), 61(6), 43-51.
Dally, C., Johnson, D., Canon, M., Ritter, S., & Mehta, K. (2015, October). Characteristics of a 3D-printed prosthetic hand for use in developing countries. In 2015 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 66-70). IEEE.
De Jong, J. P. J., & De Bruijin, E. (2012). Innovation Lessons From 3-D Printing. MIT Sloan Management Review. https://sloanreview.mit.edu/article/innovation-lessons-from-3-d-printing/
Dombroski, C. E., Balsdon, M. E. R., & Froats, A. (2014). The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: A preliminary study. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-443
Fan, D., Li, Y., Wang, X., Zhu, T., Wang, Q., Cai, H., Li, W., Tian, Y., & Liu, Z. (2020). Progressive 3D Printing Technology and Its Application in Medical Materials. In Frontiers in Pharmacology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fphar.2020.00122
Francolí, J. F., & Díaz, R. B. (2014). Estado actual y perspectivas de la impresión en 3D. Artículos de economía industrial.
Gabor P-ța Eftimie Murgu nr, A.-G., Zaharia, C., Gabor, A.-G., Gavrilovici, A., Tudor Stan, A., Idorasi, L., Sinescu, C., & Negruțiu, M.-L. (2017). CORRESPONDENCE Digital Dentistry-3D Printing Applications. Journal of Interdisciplinary Medicine, 2(1), 50–53. https://doi.org/10.1515/jim-2017-0032
Gailey, R., Allen, K., Castles, J., Kucharik, J., & Roeder, M. (2008). Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. 45(1). https://doi.org/10.1682/JRRD.2006.11.0147
Gain, P., Jullienne, R., He, Z., Aldossary, M., Acquart, S., Cognasse, F., & Thuret, G. (2016). Global survey of corneal transplantation and eye banking. JAMA ophthalmology, 134(2), 167-173. doi: 10.1001 / jamaophthalmol.2015.4776
Garibaldi, P. M., Fernández, J. A. B., Gómez, L. H. H., Saucedo, F. L., Valdez, N. C., & Paredes, J. M. (2017). Metodologıa para el modelado y la manufactura de una protesis del maxilar inferior para su posible tratamiento por deformaci on congénita. Journal de Ciencia e Ingenierıa, 9(1), 7-12.
Gómez Blázquez, G. (2019). Proyecto de diseño de una prótesis a partir de fabricación aditiva (impresión 3D) (Master's thesis, Universitat Politècnica de Catalunya).
Hernández, A. C., Vargas, A. B., & Rodríguez, D. M. DESARROLLO DE UNA PRÓTESIS DE BAJO COSTO UTILIZANDO NUEVAS TECNOLOGÍAS DE MANUFACTURA ADITIVA (IMPRESIÓN 3D).
Ko, J., Kim, S. H., Baek, S. W., Chae, M. K., & Yoon, J. S. (2019). Semi-automated fabrication of customized ocular prosthesis with three–dimensional printing and sublimation transfer printing technology. Scientific reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-38992-y
Konta, A. A., García-Piña, M., & Serrano, D. R. (2017). Personalised 3D printed medicines: Which techniques and polymers are more successful? In Bioengineering (Vol. 4, Issue 4, p. 79). MDPI AG. https://doi.org/10.3390/bioengineering4040079
LeBlanc, M. (1988). Use of prosthetic prehensors. Prosthetics and orthotics international, 12(3), 152-154.
Lee, J. S., Hong, J. M., Jung, J. W., Shim, J. H., Oh, J. H., & Cho, D. W. (2014). 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication, 6(2), 024103.
Lopez, E. E. L., Méndez, R. M., & González, A. H. V. (2019). Diseño de una prótesis de mano para uso en teclados con interfaz sEMG. ReCIBE, Revista electrónica de Computación, Informática, Biomédica y Electrónica, 8(1), B1-B1.
Ludwig, P. E., Huff, T. J., & Zuniga, J. M. (2018). The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. Journal of tissue engineering, 9, 2041731418769863.
Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., Verma, N., Gracias, D. H., & McAlpine, M. C. (2013). 3D printed bionic ears. Nano Letters, 13(6), 2634–2639. https://doi.org/10.1021/nl4007744
Mckechnie, P. S., & John, A. (2014). Anxiety and depression following traumatic limb amputation: a systematic review. Injury, 45(12), 1859-1866.
Mohammed, M. I., Cadd, B., Peart, G., & Gibson, I. (2018). Augmented patient-specific facial prosthesis production using medical imaging modelling and 3D printing technologies for improved patient outcomes. Virtual and Physical Prototyping, 13(3), 164-176.
Mohammed, M. I., Tatineni, J., Cadd, B., Peart, G., & Gibson, I. (2017, January). Advanced auricular prosthesis development by 3D modelling and multi-material printing. In DesTech 2016: Proceedings of the International Conference on Design and Technology (pp. 37-43). Knowledge E.
OMS. (2017). NORMAS DE ORTOPROTÉSICA PARTE 1. NORMAS. Retrieved April 10, 2021, from https://cutt.ly/Cc46F24
Rodríguez, V. A., & Salaña, J. J. (2018, June). Prótesis en impresiones 3D de bajo costo “Hand To Hand”. In Memorias de Congresos UTP (pp. 52-55).
Saadi, R., & Lighthall, J. G. (2017). Prosthetic reconstruction of the ear. Operative Techniques in Otolaryngology - Head and Neck Surgery, 28(2), 130–132. https://doi.org/10.1016/j.otot.2017.03.013
Sánchez, E. J. A., & Falfán, L. G. (2019). El impacto de la impresión 3D en la construcción de una prótesis de mano. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 7(Especial), 27-31.
Saunders, S. (2017) Biomedical research team in Spain working on 3D printed corneas to make up for lack of donors. 3DPrint.com. https://www.3dprint.com/184469/spain-3d-printed-cornea-project/. Accessed 05 May 2021
Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
Suárez, J. A. F., Barrera, L. M. A., Baque, D. A. T., & Arteaga, P. A. R. (2019). Innovación en salud bucodental: Impresión en 3D en la Unidad Odontológica Clinident. Dominio de las Ciencias, 5(4), 61-79.
Suaste-Gómez, E., Rodríguez-Roldán, G., Reyes-Cruz, H., & Terán-Jiménez, O. (2016). Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors (Switzerland), 16(3), 332. https://doi.org/10.3390/s16030332
Ten, Kate, J., Smit, G., & Breedveld, P. (2017). 3D-printed upper limb prostheses: a review. Disability and Rehabilitation: Assistive Technology, 12(3), 300–314. https://doi.org/10.1080/17483107.2016.1253117
Tong, Y., Kucukdeger, E., Halper, J., Cesewski, E., Karakozoff, E., Haring, A. P., McIlvain, D., Singh, M., Khandelwal, N., Meholic, A., Laheri, S., Sharma, A., & Johnson, B. N. (2019). Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. PLOS ONE, 14(3), e0214120. https://doi.org/10.1371/journal.pone.0214120
Vazquez-Vela, E. (2015). Los amputados, un reto para el estado. Acta de la Sesión del, 4, 1-9.
Ventola, C. L. (2014). Medical applications for 3D printing: current and projected uses. Pharmacy and Therapeutics, 39(10), 704.
Vijayavenkataraman, S., Fuh, J. Y., & Lu, W. F. (2017). 3D printing and 3D bioprinting in pediatrics. Bioengineering, 4(3), 63. https://doi.org/10.3390/bioengineering4030063
Vujaklija, I., & Farina, D. (2018). 3D printed upper limb prosthetics. Expert review of medical devices, 15(7), 505-512.
Wu, Y., Jiang, D., Liu, X., Bayford, R., & Demosthenous, A. (2018). A human–machine interface using electrical impedance tomography for hand prosthesis control. IEEE transactions on biomedical circuits and systems, 12(6), 1322-1333.
Xiao, R., Feng, X., Fan, R., Chen, S., Song, J., Gao, L., & Lu, Y. (2020). 3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesis. Composites Part B: Engineering, 193, 108057.
Xu, G., Gao, L., Tao, K., Wan, S., Lin, Y., Xiong, A., Kang, B., & Zeng, H. (2017). Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist. Medicine (United States), 96(52). https://doi.org/10.1097/MD.0000000000009426
Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429. https://doi.org/10.1016/j.apmr.2007.11.005
Zou, Y., Yang, Y., Han, Q., Yang, K., Zhang, K., Wang, J., & Zou, Y. (2018). Novel exploration of customized 3D printed shoulder prosthesis in revision of total shoulder arthroplasty A case report. https://doi.org/10.1097/MD.0000000000013282
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Interdisciplinaria de Ingeniería Sustentable y Desarrollo Social

This work is licensed under a Creative Commons Attribution 4.0 International License.