Green Chemistry, definitions and applications

Authors

  • Enrique Ruiz-Reyes Universidad Técnica de Manabi
  • José Alberto Ruiz Universidad Técnica de Manabi

DOI:

https://doi.org/10.63728/riisds.v6i1.221

Keywords:

green chemistry, sustainability, efficiency, resources, processes

Abstract

Chemistry is essential to ensure that the next generations of chemicals, materials and energy are sustainable and renewable. Chemistry is also essential to remove contaminants that already exist on our planet. This work reviews the development of Green Chemistry, emphasizing its principles, as well as citing specific examples of compounds used in sustainable non-polluting processes and of support given to motivate the study and development of sustainable processes and Green Chemistry in future generations. Nowadays, there is an enormous deterioration of the environment, which has generated the need to look for alternatives, which lead to environmental sustainability. One of these tools is "green chemistry", a concept that includes the design of products and processes that reduce the generation of dangerous substances and maximize efficiency in the use of material and energy resources. The use of less polluting technologies will allow chemical companies to reduce the environmental effects associated with their activity, reducing the consumption of materials and increasing the participation of renewable resources. To achieve these goals, 12 basic principles of green chemistry have been proposed, applicable in different fields, such as medicine, agriculture, and the chemical and pharmaceutical industries. This review details the main principles and uses of green chemistry as well as the antecedents that gave rise to it, and its application as a working methodology to advance towards true sustainable development.

References

Aguado, J. & Serrano, D. P., (1999). Feedstock Recycling of Plastic Wastes. Cambridge: The Royal Society of Chemistry.

Akien, G. R. & Poliakoff, M., (2009). A critical look at reactions in class I and II gas­expanded liquids using CO and other gases, Green Chemistry, 11, 1083–1100.

Alcaide, B. & Almendros, P., (2008). Organocatalytic Reactions with Acetaldehyde, Angewandte Chemie International Edition, 47, 4632–4634.

Alcántara, A. R., Hernaiz, M. J. & Sinisterra, J. V., (2011). Biocatalyzed Production of Fine Chemicals. In: Murray, M.Y. (ed.), Comprehensive Biotechnology (Second Edition) (pp. 309­331). Burlington: Academic Press.

Alonso, F., Riente, P. & Yus, M., (2011). Nickel Nanoparticles in Hydrogen Transfer Reactions, Accounts of Chemical Research, 44, 379­391.

Anastas, P. T. & Warner, J. C., (1998). Green Chemistry: Theory and Practice, Oxford: Oxford University Press.

Anastas, P. T., (2007). Green Chemistry. Design Innovation, Solu­Green Chemistry. Design Innovation, Solutions and a Cohesive System, Green Chemistry Letters and Reviews, 1, 3­4.

Anastas, P., Warner, J. (2000) Green Chemistry: Theory and Practice, Primer Edición, Oxford University Press, New Cork

Anastas, P.; Eghbali, N. (2010). "Green Chemistry: Principles and Practice". Chem. Soc. Rev., 39, 301-312.

Azapagic, A. (2002). Life Cycle Assessment: a Tool for Identification of More Sustainable Products ans Processes. In: Clark, J. & Macquarrie, D. (ed.), Handbook of Green Chemistry and Technology (pp. 62­85). Oxford: Blackwell Publishing.

Bellés, X. (coord.), (1988). Insecticidas Biorracionales. Madrid: Consejo Superior de Investigaciones Científicas.

Belloso W.H., (2009). Historia de los antibióticos. Revista del Hospital de Buenos Aires, Vol. 2, 102-111.

Boehtling, R. S., Sommer, E. & Di Fiore, D., (2007). Designing Small Molecules for Biodegradability, Chemical Reviews, 107, 207­2227.

Bravo, J. L. López, ICintas, . P. Silvero G. and Arévalo, M. (2006). J. Ultrason. Sonochem. 13, 408-414.

Bridge, G., (2004). Contested terrain: mining and the environment, Annual Review of Environmental Resources, 29, 205­259.

Brown, T., Le May, H., Bursten, B. (2004) Química, La ciencia central, novena edición en español, Prentice Hall, México.

Cano, R., Ramón, D. J. & Yus, M., (2011). Impregnated Ruthenium on Magnetite as a Recyclable Catalyst for the N­Alkylation of Amines, Sulfonamides, Sulfinamides, and Nitroarenes Using Alcohols as Electrophiles by a Hydrogen Autotransfer Process, Journal of Organic Chemistry, 76, 5547–5557.

Carson R. L. (1962). Silent Spring, 1a. edición, the Riverside press, Cambridge, Massachusetts, EUA.

Carson R. L. (2010). Primavera silenciosa, traducción por Joandomènec Ros, Serie Drakontos Bolsillo, Editorial Crítica, Barcelona, España.

Carta Mundial de la Naturaleza, Informe de la Comisión Mundial “Nuestro Futuro Común”, Informe Geo 4. https://www.oei.es/historico/decada/GEO-4_Report_Full_ES.pdf

Climent, M. J., Corma, A. & Iborra, S., (2011). Heterogeneous Catalysts for the One­Pot Synthesis of Chemicals and Fine Chemicals, Chemical Reviews, 111, 1072–1133.

Corma, A., Iborra, S. & Velty, A., (2007). Chemical Routes for the Transformation of Biomass into Chemicals, Chemical Reviews, 107, 2411­2502.

Cozzi, G. & Zoli, L., A (2008).Rational Approach towards the Nu­A Rational Approach towards the Nucleophilic Substitutions of Alcohols “on Water”, Angewandte Chemie International Edition, 47, 4162­4166.

Cravotto, G. & Cintas, P., (2012). Harnessing mechanochemical effects with ultrasound­induced reactions, Chemical Science, 3, 295–307.

Cuñat, P., (1984). Plaguicidas no contaminantes, Revista de Agroquímica y Tecnología de Alimentos, 24, 289­299.

De la Hoz, A., Diaz­Ortiz, A. & Moreno, A., (2005). Microwaves in organic synthesis. Thermal and non­thermal microwave effects, Chemical Society Reviews, 34, 164­178.

Díaz­Álvarez, A. E., Francos, J., Lastra­Barreira, B., Crochet, P. & Cadierno, V., (2011). Glycerol and derived solvents: new sustainable reaction media for organic synthesis, Chemical Communications, 47, 6208–6227.

Doménech, X., (1999). Química de la contaminación. Madrid: Miraguano Ediciones.

Dondoni, A. & Massi, A., (2008). Asymmetric Organocatalysis: From Infancy to Adolescence, Angewandte Chemie International Edition, 47, 4638­4660.

Eckert, C. A., Liotta, C. L., Bush, D., Brown, J. S. & Hallett, J. P., (2004). Sustainable Reactions in Tunable Solvents, Journal of Physical Chemistry B, 108, 18108­18118.

Enthaler, S., Junge, K. & Beller, M., (2008). Sustainable Metal Cataly­Sustainable Metal Catalysis with Iron: From Rust to a Rising Star?, Angewandte Chemie International Edition, 47, 3317­3321.

Faber, K., (2000). Biotransformations in Organic Chemistry, Berlin, Springer Verlag.

Faber, Kurt, (1997). Biotransformations in Organic Chemistry, tercera edición, Springer, New York.

Fagnoni, M., Dondi, D., Ravelli, D. & Albini A., (2007). Photocatalysis for the Formation of the C­C Bond, Chemical Reviews, 107, 2725­2756.

Figueruelo, J. E. & Marino­Dávila, M., (2004). Química Física del Ambiente y de los Procesos Medioambientales. Barcelona: Reverté.

Gabaldon, Reinaldo (2005) Revista Petróleo y V. 6(17) 102-117. Disponible en línea: http://www.petroleoyv.com/website/uploads/quimicamundial.pdf.

García L. (2009). Biotecnología para una química verde, respetuosa con el medio ambiente, En: Revista de Prensa Tribuna Libre, En: http://www.almendron.com/tribuna/24515/biotecnologia-para-una-quimica-verde/.

García, F., (2009). Parámetros para el análisis de las reacciones en Química Sostenible, Anales de Química, 105, 42­48.

García­Domenech, R., Gálvez, J., de Julián­Ortiz, J. V. & Pogliani, L., (2008). Some New Trends in Chemical Graph Theory, Chemical Reviews, 108, 1127­1169.

González, D., Adum, J., Bellomo, A., Gamenara, D., Schapiro, V., Seoane, G. (2006). Journal of Chemical Education, 83(7) 1049-1051.

González, M. L., Valea, A. (2009). El compromiso de enseñar química conm criterios de sostenibilidad: la química verde, Educaciö Química, número 2, España. http://publicacions.iec.cat/PopulaFitxa.do?moduleName=revistes_cientifiques&subModuleName=&idColleccio=6090. Consulta 18/07/11.

Gordon, Charles M.; Leitner, Walter (2006) “Supercritical fluids” en Cole-Hamilton, D. J.; Tooze, R. P. (editores). Catalyst Separation, Recovery and Recycling, Springer, Holanda, 215-236.

Gross, G. A. Wurziger H. Schober, and A. (2006). J. Comb. Chem. 8, 153-155.

Hernández, J. G. & Juaristi, E., (2012). Recent Efforts Directed to the Development of more Sustainable Asymmetric Organocatalysis, Chemical Communications, 48, 5396–5409.

Herrmann,W. A., Rost, A. M. J., Tosch, E., Riepl, H. & Kühn, F. E., (2008). Super Absorbers from Renewable Feedstock by Cata­Super Absorbers from Renewable Feedstock by Catalytic Oxidation, Green Chemistry, 10, 442­446.

Horváth, I., Mehdi, H., H. Fábos, H., Boda, L. & Mika L.T., (2008). d­Valerolactone: a Sustainable Liquid for Energy and Carbon­based Chemicals, Green Chemistry, 10, 238­242.

Hudlicky, T., (2011). Introduction to Enzymes in Synthesis, Chemical Reviews, 111, 3995–3997.

Jachuck, J. J., Selvaraj, D. K. & Varma, R. S., (2006). Process intensi­Process intensification: oxidation of benzyl alcohol using a continuous isothermal reactor under microwave irradiation, Green Chemistry, 6, 29­33.

Jachuk, R., Process Intensification in Green Chemistry. In: Clark, J. & Macquaqrrie, D. (ed.), (2002). Handbook of Green Chemistry and Technology. Oxford: Blackwell.

Jung, Y. & Marcus, R. A., (2007). On the Theory of Organic Catalysis “on Water”, Journal of the American Chemical Society, 129, 5492­5502.

Krähling, H. (1999). "Green vs. sustainable chemistry-More than a discussion on catchwords". Environ. Sci. & Pollut. Res., 6, 124.

Krochta, J. M. & De Mulder­Johnson, C. L. C., Biodegradable Polymers from Agricultural Products. In: Fuller, G., McKeon, T. M. & Bills, D. D., (ed.), (1996). Agricultural Materials as Renewable Resources, ACS Symposium Series 647 (pp. 120­140). Washington: American Chemical Society.

Kümmerer, K., (2007). Sustainable from the very Beginning: Rational Design of Molecules by Life Cycle Engineering as an Important Approach for Green Pharmacy and Green Chemistry, Green Chemistry, 9, 899­907.

López Gresa, M. P. (2006). Aislamiento, purificación y caracterización estructural de nuevos principios bioactivos a partir de extractos fúngicos, tesis doctoral, Universidad Politécnica de Valencia, http://riunet.upv.es/bitstream/handle/10251/1823/tesisUPV2520.pdf?sequence=1.

Luque de Castro, M. D.; Valcárcel, M.; Tena, M. T. (1993). Extracción con fluidos supercríticos en el proceso analítico, Editorial Reverté, Barcelona, España.

M. Lancaster, (2002). Green Chemistry: An Introductory Text. (Royal Society of Chemistry, Cambridge.

Martin­Luengo, M. A., Yates, M., Diaz, M., Saez­Rojo, E. & Gonzalez­Gil, L., (2011). Renewable Fine Chemicals from Rice and Citric Subproducts: Ecomaterials, Applied Catalysis B: Environmental, 106, 488–493.

Mason, B. P., Price, K. E., Steinbacher, J. L. et al., (2007). Greener Ap­Greener Approaches to Organic Synthesis Using Microreactor Technology, Chemical Reviews, 107, 2300­2318.

Mestres, R., (2008). La Química en la mitigación del cambio climático. Reducción de la generación de dioxide de carbono, Anales de Química, 104, 126­133.

Mestres, R., (2008). La Química en la mitigación del cambio climático. Captura y retención del dióxido de carbono, Anales de Química, 104, 197­204.

Mestres, R., (2010). Química Sostenible. Madrid: Editorial Síntesis.

Meyer. A. R., Metzger, J. O. & Schubert, U. S., (2007). Plant Oil Renewable Resources as Green Alternatives in Polymer Science, Chemical Society Reviews, 36, 1788­1802.

Montilla, F., Huerta, F., Salinas­Torres, D., Morallón, E., Cebrián, C., Prieto, P., Díaz­Ortiz, A., de la Hoz, A., Carrillo, J. R. & Romero, C., (2012). Electrochemical Synthesis and Spectroelectrochemical Characterization of Triazole/Thiophene Conjugated Polymers, Electrochimica Acta, 58, 215­222.

Moyna, P.; Moyna, G., Brady, W.; Tabarez; C., Yan Cheg, H. (2011) Synthetics Communications, 41, Edición 19, Londres. http://www.tandfonline.com/doi/abs/10.1080/00397911.2010.515359.

Ordóñez, A.; Rojas, N.; Parada, F.; Rodríguez, I. (2006). "Estudio comparativo de la extracción de cafeína con CO2 supercrítico y acetato de etilo". Rev. Ing., 24, 34-42.

Peiró Muñoz, A. (2003) Tesis doctoral: Nuevas aportaciones a las metodologías en Química Verde, Universidad Autónoma de Barcelona. http://tdx.cat/bitstream/handle/10803/3153/ampm1de4.pdf?sequence=1.

Phair, J. W., (2006). Green Chemistry for Sustainable Cement production and Use, Green Chemistry, 9, 763­780.

Pla­Franco, J., Gálvez­Llompart, M., Gálvez, J., & García Doménech, R., Application of Molecular Topology for the Prediction of Reaction Yields and Anti­Inflammatory Activity of Heterocyclic Amidine Derivatives, (2011). International Journal of Molecular Sciences, 12, 1281­1292.

Poliakoff, M. & Licence, P., (2007). Green Chemistry, Nature, 450, 810­812.

Roncaglioni, A. & Benfenati, E. (2008). In: Silico­aided Prediction of Biological Properties of Chemicals: Oestrogen Receptor mediated Effects, Chemical Society Reviews, 37, 441­450.

Sánchez­Montero, J. M. & Sinisterra, J. V., (2007). Biocatalisis aplicada a la Química Farmacéutica, Anales de la Real Academia Nacional de Farmacia, 73, 1199­1236.

Sanghi, R.; Singh, V.; Sharma, R. K. (2012). “Enviroment and the role of green chemistry” en Sanghi, Rashmi; Singh, Vandana (editores), Green Chemistry for Environmental Remediation, John Wiley & Sons, EUA, 1-34.

Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D., (1993). Environmental Organic Chemistry. New York: John Wiley.

Sheldon, R. A. & van Bekkum, H., (ed.), (2001). Fine chemicals through heterogeneous catalysis. Weinheim: Wiley­VCH.

Stefani, H. A. Oliveira, C. B. Almeida, R. B. Pereira, C. M. Braga, R. C. Cella, R. Borges, V. C. Savegnago L. and Nogueira, C. W. (2006). Eur. J. Med. Chem. 41, 513-518.

Stephen, A. & Hashmi K., (2007). Gold­Catalyzed Organic Reactions, Chemical Reviews, 107, 3180–3211.

Trost, B. M., (1991). The Atom Economy. A Search for Synthetic Ef­he Atom Economy. A Search for Synthetic Efficiency, Science, 254, 1471­1477.

Verma R. P. & Hansch, C., (2011). Use of C13 NMR Chemical Shift as QSAR/QSPR Descriptor, Chemical Reviews, 111, 2865– 2899.

Vieitez, I., da Silva, C., Borges, G., Corazza, F., Olivera, J. V., Grompone, M. A., Jachmanián, I. (2008) Energy & Fuels 22 2085-2089.

Voutchkova, A. M., Osimitz, T. G. & Anastas, P. T., (2010). Toward a Comprehensive Molecular Design Framework for Reduced Hazard, Chemical Reviews, 110, 5845–5882.

Warner, J. C., Cannon, A. S. & Dye, K. M., (2004). Green Chemistry, Environmental Impact Assessment Review, 24, 775­799.

Wender, P. A., Croatt, M. P. & Witulski, B., New Reactions and Step Economy: the total Synthesis of (±)­Salsolene Oxide Based on the Type II Transition Metal­catalyzed Intramolecular [4+4] Cycloaddition, (2006). Tetrahedron, 62, 7505­751.

Zhang, X. Li, Y. Liu C. and Wang, J. (2006). J. Mol. Catal. Chem. 253, 207-211.

Zhidovinova, M. S. Fedorova, O. V. Rusinov, G. L. and Ovchinnikova, I. G., Russ. (2003). Chem. Bull. Int. Ed. 52, 2527-2528

Published

2020-12-18

How to Cite

Ruiz-Reyes, E., & Ruiz, J. A. (2020). Green Chemistry, definitions and applications. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 6(1), 38–79. https://doi.org/10.63728/riisds.v6i1.221

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.