Wireless network of smart sensors for applications in sustainable precision agriculture
DOI:
https://doi.org/10.63728/riisds.v6i1.229Keywords:
Wireless sensor networks, sustainable agricultre, precisión agriculturaAbstract
Agriculture in the 21st century faces multiple challenges: We have to produce more food and fiber with the goal to feed a growing population with a smaller workforce. Modern agriculture needs tools and technologies that are able to improve the efficiency of production, product quality, post-harvest operations and reduce the environmental impact. This paper shows the design of a network of wireless sensors for precision agriculture with a 3 layer node, Network Interface, Model Object Firmware and Transducer Interface, to detect anomalies in agricultural crops, the interconnection between the nodes is based on a Wi-Fi link, while the data transmission between the nodes is performed through high-performance 2.4 GHz modules. The alert system for anomalies is based on a Mamdani-type fuzzy rule-based system where the rules and membership levels are customized according to the disease and crop of interest; we used the late blight conditions on a potato crop for the tests of the system. The proposed system has a great potential to monitor several agronomical variables and detect anomalies, which will contribute to farmers making opportune decisions in the agronomical management of their crops contributing to an environmentally sustainable agriculture.
References
Abbasi AZ, Islam N, Shaikh ZA, others. A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces. 2014; 36(2): p. 263-270.
Ahmad, I.; Shah, K.; Ullah, S. Military applications using wireless sensor networks: a survey. Int. J. Eng. Sci. 2016, 6, 7039–7043.
Akan, O.B.; Akyildiz, I.F. Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans. Networks. 2005, 13, 1003–1016.
Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
Araghi, B.N.; Christensen, L.T.; Krishnan, R.; Lahrmann, H. Application of Bluetooth Technology for Mode- Specific Travel Time Estimation on Arterial Roads: Potentials and Challenges. In Proceedings of the Annual Transport Conference, Aalborg University, Aalborg, Denmark, 9–12 July 2012; pp. 1–15. [Google Scholar]
Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA 2012, 201206851. [CrossRef] [PubMed].
Carrasco, E; Estrada, N; Gabriel, J; Quiroga, O; García, W; Mendoza, O. 1995. Seis nuevas variedades de papa con resistencia al tizón (Phytophthora infestans). Boletín Técnico Instituto Boliviano de Tecnología Agropecuaria, TECNO-IBTA 1 (5): 1-8.
Chaiwatpongsakorn, C.; Lu, M.; Keener, T.C.; Khang, S.J. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring. Int. J. Environ. Res. Public Health 2014, 11, 6246–6264.
Dayan, A.D. Solar and Ultraviolet Radiation. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. J. Clin. Pathol. 1993, 46, 880. [CrossRef]
Deepika G, Rajapirian P. Wireless sensor network in precision agriculture: A survey. In IEEE, editor. Emerging Trends in Engineering, Technology and Science (ICETETS); 2016. p. 1--4.
FAO (Food and Agriculture Organization of the United Nations). 2009. How to feed the world in 2050. FAO. Roma. 35 p. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_ paper/how_to_feed_the_world_in_2050.pdf
Lee, K.T.; Lee, B.Y.; Won, Y.I.; Jee, J.B.; Lee, W.H.; Kim, Y.J. Radiative Properties at King Sejong Station in West Antarctica with the Radiative Transfer Model: A Surface UV-A and Erythemal UV-B Radiation Changes.Ocean Polar Res. 2003, 25, 9–20. [CrossRef]
Meeradevi AK, Mundada MR. ZigBee Based Wireless Sensor Networks in Precision Agriculture-The Survey. International Journal of Application or Innovation in Engineering & Management (IJAIEM). 2015; 4(5).
Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP.
In Proceedings of the 2017 IEEE International Systems Engineering Symposium, Vienna, Austria, 11–13 October 2017.
Ohnishi, Y.; Tajima, S.; Akiyama, M.; Ishibashi, A.; Kobayashi, R.; Horii, I. Expression of elastin-related
proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch. Dermatol. Res. 2000,
292, 27–31. [CrossRef] [PubMed]
Patil S, Kokate AR, Kadam DD. Precision Agriculture: A Survey. International Journal of Science and Research (IJSR). 2016 August; 5(8).
Sola, Y.; Lorente, J. Contribution of UVA irradiance to the erythema and photoaging effects in solar and sunbed exposures. J. Photochem. Photobiol. B Biol. 2015, 143, 5–11. [CrossRef] [PubMed]
S. B. Crary, W. G. Baer, J. C. Cowles, and K. D. Wise, (1990), “Digital compensation of high-performance silicon pressure transducers”, Sensors and Actuators A, 21–23:70–72.
Shankar P, Nagaraju B. A Survey on Wireless Sensor Network For Agriculture. International Journal on Recent and Innovation Trends in Computing and Communication. 2017 July; 5(7).
Srbinovska, Gavrovski , Dimcev , Krkoleva A, Borozan. Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production. 2015; 88(Supplement C): p. 297 - 307.
Sieber, A.; Cocco, M.; Markert, J.; Wagner, M.F.; Bedini, R.; Dario, P. ZigBee based buoy network platform for environmental monitoring and preservation: Temperature profiling for better understanding of Mucilage massive blooming. In Proceedings of the 2008 International Workshop onIntelligent Solutions in Embedded Systems, Regensburg, Germany, 10–11 July 2008; pp. 1–14.
Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [CrossRef]
Hamidouche, R.; Aliouat, Z.; Gueroui, A.M.; Ari, A.A.A.; Louail, L. Classical and bio-inspired mobility in sensor networks for IoT applications. J. Network Comput. Appl. 2018, 121, 70–88.
Kim, O.K.; Nam, D.E.; Lee, M.J.; Kang, N.; Lim, J.Y.; Lee, J. Protective effects of green tea seed extract against
UVB-irradiated human skin fibroblasts. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1–8. [CrossRef].
Kwak, M. K.; Kim, J. H. The radiative characteristics of EUV-B over the Korean peninsula and exposure time for synthesizing adequate vitamin D. Atmosphere 2011, 21, 123–130.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Interdisciplinaria de Ingeniería Sustentable y Desarrollo Social

This work is licensed under a Creative Commons Attribution 4.0 International License.