Design and development of an ankle-foot orthosis (AFO) using 3D printing
DOI:
https://doi.org/10.63728/riisds.v10i1.45Keywords:
orthosis, 3D modeling, 3D printingAbstract
The study details the historical evolution of orthoses, from their rudimentary origins to modern advances. The main objective is the design and development of an ankle-foot orthosis, using 3D printing technology. This prototype provides the patient with stability, mobility, comfort, improving the patient's ankle-foot functionality, decreasing the risk of fractures and generally improving their quality of life. The methodology includes the phases of requirements determination, 3D modeling, prototype construction, testing, adjustments and implementation. As a result, the design and development of the orthosis is presented, as well as the materials, 3D printer and software used, so that physicians or authors can replicate or reproduce it. It is concluded that the orthosis developed in 3D printers, guarantees a personalized adaptation to the patient's anatomy, with a focus on ergonomics, precision and comfort.
References
Aboutorabi, A., Arazpour, M., Ahmadi Bani, M., Saeedi, H., & Head, J. (2017). Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review. Ann. Phys. Rehabil. Med., 60, 393–402. https://doi.org/10.1016/j.rehab.2017.05.004
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz, 60, 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
Autti-Rämö, I., Suoranta, J., Anttila, H., Malmivaara, A., & Mäkelä, M. (2006). Effectiveness of upper and lower limb casting and orthoses in children with cerebral palsy: An overview of review articles. Am. J. Phys. Med. Rehabil., 85, 89–103. https://journals.lww.com/ajpmr/abstract/2006/01000/effectiveness_of_upper_and_lower_limb_casting_and.13.aspx
Cano-Vicent, A., Tambuwala, M., Hassan, S., Barh, D., Aljabali, A., Birkett, M., . . . Serrano-Aroca, Á. (2021). Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Addit. Manuf., 47(102378). https://doi.org/10.1016/j.addma.2021.102378
Choo, Y., Boudier-Revéret, M., & Chang, M. (2020). 3D printing technology applied to orthosis manufacturing: narrative review. Ann. Palliat. Med., 9, 4262–4270. https://doi.org/10.21037/apm-20-1185
Daryabor, A., Arazpour, M., & Aminian, G. (2018). Effect of Different Designs of Ankle-Foot Orthoses on Gait in Patients with Stroke: A Systematic Review. Gait Posture, 62, 268–279. https://doi.org/10.1016/j.gaitpost.2018.03.026
Figueiredo, E., Ferreira, G., Maia Moreira, R., Kirkwood, R., & Fetters, L. (2008). Efficacy of Ankle-Foot Orthoses on Gait of Children with Cerebral Palsy: Systematic Review of Literature. Pediatr. Phys., 20, 207–223. https://journals.lww.com/pedpt/abstract/2008/02030/efficacy_of_ankle_foot_orthoses_on_gait_of.2.aspx
Firouzeh, P., Sonnenberg, L., Morris, C., & Pritchard-Wiart, L. (2021). Ankle foot orthoses for young children with cerebral palsy: A scoping review. Disabil. Rehabil, 43, 726–738. https://doi.org/10.1080/09638288.2019.1631394
Galli, K., & Pelozo, S. (25 de 12 de 2017). Órtesis y Prótesis. Auditoría médica.
Hull, C. (s.f.). 3D Systems Engineering Company. Retrieved 30 de 08 de 2024, from https://es.3dsystems.com/quickparts/learning-center/what-is-stl-file#:~:text=El%20formato%20de%20archivo%20STL,un%20modelo%20s%C3%B3lido%20con%20tri%C3%A1ngulos.
Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., & Ul Haq, M. (2022). 3D Printing—A Review of Processes, Materials and Applications in Industry 4.0. Sustain. . Oper. Comput., 3, 33–42. https://doi.org/10.1016/j.susoc.2021.09.004
Keller, M., Guebeli, A., Thieringer, F., & Honigmann, P. (2021). In-hospital professional production of patient-specific 3D-printed devices for hand and wrist rehabilitation. Hand Surg.Rehabil, 40, 126–133. https://doi.org/10.1016/j.hansur.2020.10.016
Mazzoli, A., Maida, L., Iasilli, G., & Aversa, A. (2020). 3D printing processes for materials and devices: Some major examples and trends in the medical field and related applications. Materials, 13(3), 575.
Morris, C., Bowers, R., Ross, K., Stevens, P., & Phillips, D. (2011). Orthotic management of cerebral palsy: Recommendations from a consensus conference. NeuroRehabilitation, 28, 37–46.
Ngo, T., Kashani, A., Imbalzano, G., Nguyen, K., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Parte B Eng., 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Ofluoğlu, D. B. (2009). Orthotic management in cerebral palsy. Acta Orthop. Traumatismo., 43, 165-172. https://doi.org/10.3944/AOTT.2009.165
Oud, T., Lazzari, E., Gijsbers, H., Gobbo, M., Nollet, F., & Brehm, M. (2021). Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. PLoS ONE, 16(e0260271). https://doi.org/10.1371/journal.pone.0260271
Raj, R., Dixit, A., Łukaszewski, K., Wichniarek, R., Rybarczyk, J., Kuczko, W., & Górski, F. (2022). Numerical and Experimental Mechanical Analysis of Additively Manufactured Ankle–Foot Orthoses. . Materials, 15(6130). https://doi.org/10.3390/ma15176130
Tardieu, C., Lespargot, A., Tabary, C., & Bret, M. (1988). For how long must the soleus muscle be stretched each day to prevent contracture? . Dev. Med. Child Neurol. , 30, 3–10. https://doi.org/10.1111/j.1469-8749.1988.tb04720.x
Vafadar, A., Guzzomi, F., Rassau, A., & Hayward, K. (2021). Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci., 11, 1213. https://doi.org/10.3390/app11031213
Wohlers, T. (2019). 3D Printing and Additive Manufacturing State of the Industry Annual .
Wright, E., & DiBello, S. (2020). Principles of Ankle-Foot Orthosis Prescription in Ambulatory Bilateral Cerebral Palsy. Phys. Med. Rehabil. Clin. N. Am., 31, 69–89. https://doi.org/10.1016/j.pmr.2019.09.007
Zolfagharian, A., Kouzani, A., Khoo, S., Moghadam, A., Gibson, I., & Kaynak, A. (2016). Evolution of 3D printed soft actuators. Sens. Actuators A Phys., 250, 258–272. https://doi.org/10.1016/j.sna.2016.09.028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 RIISDS. Revista interdisciplinaria de ingeniería sustentable y desarrollo social

This work is licensed under a Creative Commons Attribution 4.0 International License.