Biological effectiveness of biorational insecticides in the control of whitefly populations

Authors

  • Adalid Graciano-Obeso Tecnológico Nacional de México - Instituto Tecnológico Superior de Guasave
  • Gregorio Pollorena-López Tecnológico Nacional de México - Instituto Tecnológico Superior de Guasave
  • Cruz Enrique Beltrán-Burboa Tecnológico Nacional de México - Instituto Tecnológico Superior de Guasave

DOI:

https://doi.org/10.63728/riisds.v9i1.102

Keywords:

Bemisia tabaci, plant extract, entomopathogenic fungi

Abstract

In Mexico, one of the main pests that compromise the yield of horticultural crops is the whitefly (Bemisia tabaci); today, to control it, sustainable alternatives are sought that do not put the assets of agricultural producers at risk. The objective of the present investigation was to carry out a comparison of the biological effectiveness and yield of tomato fruit, using entomopathogenic fungi, neem extracts and a combination of entomopathogenic fungi with neem extracts in two sites in Guasave, Sinaloa, during the cycle. AW 2021-2022. To achieve this, a Completely Randomized Block Design (DBCA) was established with three repetitions. The response variable was the biological effectiveness of biorational insecticides on populations of adults, nymphs and whitefly eggs in each of the treatments. From the above, it appears that the highest percentage of reduction was in T5 where the entomopathogenic fungus Beauveria bassiana combined with neem extract was applied, with a 90.31% reduction in the Experimental Field of the Association of Farmers of the Sinaloa River Poniente A.C., T5 was statistically different (p<0.05) compared to the other treatments. The average fruit yield was statistically different between the two study sites. Based on the above, biorational insecticides are a viable option for whitefly control without compromising crop performance.

References

Chen, W., HAsegawa, D., Kaur, N., Kliot, A., P., V., Luan, J., Douglas, A. (2016). The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC BIOLOGY, 1-15.

FAOSTAT. (15 de febrero de 2023). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Obtenido de https://www.fao.org/faostat/es/#data/RP/visualize

Góngora, C., Sánchez, E., Gómez, H., & Morenos, A. (2020). Effect of biorational insecticides and neicotinoids on the population density of Bemisi tabaci and fruit yield in tomato. Tropical and subtropical agroecosystems, 1-9.

Garzon, E., Fuentes, Q., & Arias, R. (2018). Manejo sostenible de mosca blanca (Trialeurodes vaporariorum) en tomate (Solanum lycopersicum) mediante estrategias basadas en agentes de control biológico.

González-Maldonado, M., & García-Gutierrez, C. (2012). Uso de biorracionales para el control de plagas de hortalizas en el norte de Sinaloa. Ra Ximhai, 31-45.

Henderson, C., & Tilton, E. (1955). Test whit acaricides against the brow wheat mite. J. Econ., 157-161.

INIA. (2018). Manejo integrado de plagas y enfermedades: Mosquita Blanca. Santiago, Chile: Centro regional INIA La Platina.

López-Martínez, J. D., Vázquez-Díaz, D. A., Esparza- Rivera, J. R., García-Hernández, J. L., Castruita-Segura, M. A., Preciado-Rangel, P. (2016). Yield and nutraceutical quality of tomato fruit produced with nutrient solutions prepared using organic materials. Revista Fitotecnia Mexicana. 39: 409 – 414.

Macías, A., Días, M., Ramos, L., Navarro, S. E., & D.J., R. (2013). Estudio de hongo entomopatógeno Isaria fumosorosea como control microbiólogico de la mosquita blanca Bemincia Tabaci. Interciencia, 523-528.

Murillo-Cuevas, F., Cabrera Mireles, H., Adame-garcía, J., Fernadez-Vios, J., Villegas-Narváez, J., López-Morales, V., & Meneses-Márquez, I. (2020). Evaluació de insecticidas biorracionales ne el control de msoca blanca (Hemiptera: Aleyrodidas) en la producción de hortalizas. Biotecnia, 39-47.

Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects - a review. Plant protect. Sci., 229-241.

Pereira da Costa, J., Cambiaso, V., Pratta, L., & Rodriguez, G. (2021). Mejoramiento de la calidad del fruto por la incorporación de genes de especies silvestres en el tomate (Solanum lycopersicum L.). BAG, Journal of bassic and applied genetics, 41-50.

Perring, T., Stany, P., Lui, T., Smith, H., & Andreason, S. (2018). Whiteflies: Biology, ecology, and management. En ustainable management of arthropod pests of tomato (págs. 73-110). Academic Press.

Pimentel, K., Pérez, D., L.E.T., P., Pérez, T., & Revol, M. (2022). USso de extracto obtenido de semilla de Azadirachta indica para el control de Bemisia tabaci en tomate. ECOVIDA, 192-199.

Reddy, G., & Miller, R. (2014). biorational versus conventional insecticides-comparative field study for managing red spider mite and fruit borer on tomato. crop Protection, 88-92.

SIAP. (2022). (08 de mayo de 2023). Servicio de Información Agroalimentaria y Pesquera. Panorama Agroalimentario 2022. https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2022/Panorama-Agroalimentario-2022.

Steiner, A. (1961). A universal method for preparing nutrient solution of a Certain desired composition. Plant Soil, 134-154.

USDA. (2022). Tomatoes and Products Annual. México: Global Agricultural Information Network. Obtenido de https://agfstorage.blob.core.windows.net/misc/FP_com/2022/06/17/Ato.pdf

Zelaya-Molina, L., Chávez-Díaz, I., de los santos-Villalobos, S. C.-C., Ruíz-Ramírez, S., & Rojas-Anaya, E. (2022). Control biológico de plagas en la agricultura mexicana. Revista mexicana de ciencias agrícolas, 69-79.

Published

2023-12-20

How to Cite

Graciano-Obeso, A., Pollorena-López, G., & Beltrán-Burboa, C. E. (2023). Biological effectiveness of biorational insecticides in the control of whitefly populations. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 9(1), 119–130. https://doi.org/10.63728/riisds.v9i1.102

Most read articles by the same author(s)