Production optimization in ABCD wells through backpressure reduction with HPS: a focus on the existing platform

Authors

  • Neify Patricia Robles-Hernández Instituto Tecnológico Superior de Tantoyuca
  • Rosalino Del Ángel-Avilés Instituto Tecnológico Superior de Tantoyuca
  • Betsabé Nataly Escudero-Díaz Instituto Tecnológico Superior de Tantoyuca

DOI:

https://doi.org/10.63728/riisds.v10i1.57

Keywords:

Horizontal electrocentrifugal pumping, artificial production systems, backpressure reduction, production optimization, oil platform

Abstract

The world is currently in a transition stage towards clean energy, however, while this happens, hydrocarbons (crude oil and gas) will contribute approximately 60% of the total demand, with crude oil accounting for 35%. Likewise, the Mexican Energy Secretariat (SENER) states that, at least until 2050, the majority will continue to depend on fossil fuels. Given this situation, innovation in technologies is sought to extract hydrocarbons found in generally mature deposits, when the natural pressure of the deposit is not sufficient to continue producing with its natural energy. Consequently, artificial production systems are a variety of operating principles, specifically designed to increase hydrocarbon production in the well. The most commonly used artificial production systems are: pneumatic pumping, mechanical pumping, hydraulic pumping, electrocentrifugal pumping, progressive cavity pumping, traveling piston, and hybrid systems. The following article presents the case of a backpressure reduction project, which has as its fundamental purpose to provide a decrease in the downwelling pressure of Wells ABCD-36, ABCD-45, ABCD-51 and ABCD-54, by using part of the existing infrastructure on the platform and allowing its potential to be exploited, thereby aiming to reduce the decline in production of these wells.

References

Apolo, B. M.-D.-B.-S. (Julio de 2020). Methodology for the selection of artificial survey systems in oil fields of Ecuador. Proceedings of the LACCEI International Multi-Conference for Engineering Education and Technology, 27-31. doi:10.18687/LACCEI2020.1.1.66

Babic, A. (2 de Noviembre de 2021). Google Pantents. Obtenido de https://patents.google.com/patent/US11162331B2/en

Camacho Cadena, W. J., & Triana Santamarina, J. A. (23 de Agosto de 2011). Tesis. Impacto de la producción de gas asociado a la producción de petroleo en los campos Galan, Gala y Llanito en pozos con sistema de levantamiento de bombeo mecánico. Bucaramanga: Universidad Industrial de Santander. Obtenido de https://oilproduction.net/files/manejo%20de%20gas%20BME-UIS.pdf

Camargo, E. B. (2019). Modelados de pozos de producción por bombeo mecánico utilizando técnicas de computación inteligente. Ciencias e Ingeniería(40), 285-295.

Ceballos, J. B., & Vivás, O. A. (2019). Mathematical model of controllers for progressive cavity pumps. Revista UIS Ingenierías, 17-30.

CNH, C. N. (08 de Octubre de 2024). Comisión Nacional de Hidrocarburos. Obtenido de https://www.gob.mx/cnh

Geolis. (25 de Octubre de 2024). Geolis. Obtenido de https://youtu.be/Yh6Y_oWl4t0?si=aJGoM1_eeIGQJvFv

Halliburton. (25 de Octubre de 2024). Halliburton. Obtenido de https://www.halliburton.com/en/production/artificial-lift/horizontal-pumping-systems

Hughes, B. (3 de 11 de 2024). Baker Hughes. Obtenido de https://www.bakerhughes.com/sites/bakerhughes/files/2020-05/Hpump-system-extends-run-life-and-reduces-maintenance-cost-90-percent-tx-cs.pdf

Jiménez Baños, J. (2019). Aplicaciones del bombeo neumático en la industria petrolera. México: Tesis UNAM.

Nastacuas Cuichan, M. H., Reyes Neira, C. A., Ramirez Chavez, I. J., Rodríguez Reyes, A. D., Vergara Murillo, M. A., & Panchi Quintana, D. S. (2022). Optimización energética en variadores de frecuencia de los bloques 16 y 67 del Oriente ecuatoriano. Revista Científica y Tecnológica UPSE, 35-47. Obtenido de https://incyt.upse.edu.ec/ciencia/revistas/index.php/rctu/article/view/669

Novomet. (25 de Octubre de 2024). Novomet. Obtenido de https://www.novometgroup.com/es

PCM. (25 de Octubre de 2024). PCM Artificial Lift Solutions. Obtenido de https://www.pcmals.com/es/desafios-de-levantamiento-artificial/como-reducir-la-presion-del-cabezal-de-pozo-de-petroleo

Santiago Girón, D. (2010). Aparejos de bombeo electrocentrífugo. Diseño para pozos con bajo RGL. México: Tesis. IPN. Obtenido de https://tesis.ipn.mx/jspui/bitstream/123456789/15560/1/Aparejos%20de%20bombeo%20electrocentrifugo,%20dise%C3%B1o%20para%20pozos%20con%20baja%20RGL.pdf

Slb. (8 de Octubre de 2024). Energy Glossary. Obtenido de https://glossary.slb.com/es/

UPC, G. A. (2024 de noviembre de 2024). UPC Global Academy. Obtenido de https://www.upcoglobal.com/academy/product/bombeo-electrosumergible-diseno-y-evaluacion/

Published

2024-12-20

How to Cite

Robles-Hernández, N. P., Del Ángel-Avilés, R., & Escudero-Díaz, B. N. (2024). Production optimization in ABCD wells through backpressure reduction with HPS: a focus on the existing platform. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 10(1), 433–450. https://doi.org/10.63728/riisds.v10i1.57

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.