Investing risk assessment in a livestock weighing service

Authors

  • Gabriel Wolstano Nava-Covarrubias Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca
  • Fabiola Sánchez-Galván Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca https://orcid.org/0000-0002-6534-3210
  • Horacio Bautista-Santos Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca https://orcid.org/0000-0002-3925-2438
  • Rogelio García-Rodríguez Tecnológico Nacional de México - Instituto Tecnológico Superior de Tantoyuca

DOI:

https://doi.org/10.63728/riisds.v8i2.131

Keywords:

Economic profitability, financial costs, Monter Carlo simulation

Abstract

The weighing of cattle is one of the key activities for the purchase and sale of animals, however, farmers do not have their own scale and resort to static weighing services located in places far from their farms, during the transfer depreciation occurs excretory (excrement and urine) which generates weight loss. This article evaluates the risk of investing in a cattle weighing service using Monte Carlo simulation based on the definition of three scenarios (pessimistic, conservative and optimistic), in which changes in demand and the margin of inflation were considered. a period of five years. The economic model was built based on the administration of expenses and profits, applying normal distributions for the management of monthly and bimonthly costs, a triangular distribution was extracted for the analysis of the demand in the three proposed scenarios. In verifying the return on investment, the concepts VAN (Net Present Value) and the IRR (Internal Rate of Return) will be applied. The simulation gave as a result that in the pessimistic scenario they pose a viability percentage of 35%, in the conservative 88% and in the optimistic 95%; It is concluded that the service is feasible in any situation that may occur when it is introduced in the market, exceeding the minimum 20% return on investment.

References

Ahmed, A., Page, J., & Olsen, J. (2019). Enhancing Six Sigma methodology using simulation techniques: Literature review and implications for future research. International journal of lean six sigma, 11(1), 211-232. https://bit.ly/37BcPO2

Destrez, A., Haslin, E., & Boivin, X. (2018). What stockperson behavior during weighing reveals about the relationship between humans and suckling beef cattle: A preliminary study. Applied Animal Behaviour Science, 209, 8-13. https://bit.ly/3xJlh6U

Frolova, V., Dolina, O., & Shpilkina, T. (2019). Investment risk management at mining enterprises. In E3S Web of Conferences (Vol. 105, p. 01054). EDP Sciences. https://bit.ly/35G51K7

Gutiérrez, M. (2018). Valoración de inversiones en proyectos no convencionales-tasa interna de retorno versus tasa interna de retorno modificada. INNOVA Research Journal, 3(9), 126-133. https://bit.ly/3yOlmZ4

Janekova, J., Fabianova, J., & Fabian, M. (2019). Assessment of economic efficiency and risk of the project using simulation. International Journal of Simulation Modelling (IJSIMM), 18(2). https://bit.ly/3KftQLS

Olivares-Pacheco, J. F., Elal-Olivero, D., Gómez, H. W., & Bolfarine, H. (2009). Una reparametrización de la distribución triangular basada en las distribuciones skew-simétricas. Revista Colombiana de Estadística, 32(1), 145-156. https://bit.ly/3lj5KF4

Pask, F., Lake, P., Yang, A., Tokos, H., & Sadhukhan, J. (2017). Sustainability indicators for industrial ovens and assessment using Fuzzy set theory and Monte Carlo simulation. Journal of Cleaner Production, 140, 1217-1225. https://bit.ly/3x4k37y

Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Villela, H. S., Torres-Acosta, J. F. D. J., Fragoso Sánchez, H., ... & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista mexicana de ciencias pecuarias, 8(1), 61-74. https://bit.ly/3xDh2Kd

Sabogal, J. A. S. (2003). Metodología para el cálculo de la tasa interna de retorno ponderada de alternativas con flujos no convencionales. Cuadernos de Administración, 16(25), 195-217. https://bit.ly/3yKQcSv

Shinzato, S., Wakeda, M., & Ogata, S. (2019). An atomistically informed kinetic Monte Carlo model for predicting solid solution strengthening of body-centered cubic alloys. International Journal of Plasticity, 122, 319-337. https://bit.ly/3NzURvC

Tarragó, J. C. P., Avila, R. A., Gallardo, M. D. C. E., & Gálvez, D. L. D. (2020). La distribución normal en ciencias biomédicas: un enfoque a partir de las distribuciones de Pearson. Sinapsis: La revista científica del ITSUP, 1(16), 7. https://bit.ly/3Mk4UUs

Published

2022-12-16

How to Cite

Nava-Covarrubias, G. W., Sánchez-Galván, F., Bautista-Santos, H., & García-Rodríguez, R. (2022). Investing risk assessment in a livestock weighing service. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 8(1), 324–333. https://doi.org/10.63728/riisds.v8i2.131

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.