Criterion for the validation of normality in small samples; parametric or nonparametric tests

Authors

  • Moisés Pedraza-Castillo Tecnológico Nacional de México - Instituto Tecnológico de Matamoros
  • Claudio Alejandro Alcalá-Salinas Tecnológico Nacional de México - Instituto Tecnológico de Matamoros https://orcid.org/0000-0001-9441-7971
  • Santa Iliana Castillo Tecnológico Nacional de México - Instituto Tecnológico de Matamoros
  • José Javier Treviño-Uribe Tecnológico Nacional de México - Instituto Tecnológico de Matamoros

DOI:

https://doi.org/10.63728/riisds.v7i1.214

Keywords:

normality test, parametric tests, nonparametric tests

Abstract

Parametric studies start from the assumption that they come from a normal distribution, while nonparametric methods are the most immediate way to solve the problem of lack of normality in a sample. The objective of the study was to compare the parametric studies against the non-parametric ones in a general way, showing, on the one hand, the graphic technique that is used in parallel with the numerical methods technique for checking the normality of the sample and a comparative table with the characteristics of the two statistical methods. And on the other hand, a decision diagram to process the sample when it does not comply with normality. It was concluded that the application of the various parametric and non-parametric tests will depend on the characteristics of the variable under study, whether the proportion of the sample and the scale of measurement of the data is higher or lower.

References

Agresti, A. , & Franklin, C. (2013). Statistics: The Art and Scince of Learning from Data. Pearson, Boston. 834 p.

Brase, C. H. , & Brase, C. P. (2012). Understandable Statistics. Cengage Learning, Boston. 844 p.

Capuñay, C. V. (2011). Estadística para la administración y los negocios. Pearson, México D.F. 470 p.

Devore, J. L. (2016). Probability and Statistics for Engineering and Sciences. Cengage Learning, Boston. 794 p.

Deshpande, J. V. , & Nimbalkar, U. N. , & Dewan, I. (2018). Nonparametric Statistics: Theory and methods. World Scientific, Singapore. 275 p.

Hollander, M. , & Wolfe, D. A. , & Chicken, E. (2014). Nonparametric Statistical Methods. Wiley, New Jersey. 844 p.

Johnson, R. , & Kuby, P. (2012). Estadística Elemental. CENGAGE Learning, México D.F. 834 p.

Levin, R. I. , & Rubin, D. S. (2004). Estadística para Administración y Economía. Pearson, Edo. de México. 956 p.

Lind, D. A. , & Marchal, W. G. , & Wathen, S. A. (2008). Estadística aplicada a los negocios y la economía. McGraw-Hill, México. D.F. 886 p.

Mann, P. S. (2010). Introductory Statistics. Wiley, New Jersey. 750 p.

Mata, A. D. (2013). Estadística aplicada a la administración y la economía. McGraw-Hill, México D.F. 634 p.

Montgomery, D. C. , & Runger, G. C. (2018). Applied Statistics and Probability for Engineers. Wiley, New Jersey. 710 p.

Peña, D. (2014). Fundamentos de Estadística. Alianza Editorial, Madrid. 688 p.

Sampieri, R. H. , & Collado, C. F. , & Lucio, M. P. B. (2014). Metodología de la Investigación. McGraw-Hill, México D.F. 634 p.

Salas, Christian, & Ene, Liviu, & Ojeda, Nelson, & Soto, Hector (2010). Métodos estadísticos paramétricos y no paramétricos para predecir variables de rodal basados en Landsat ETM: una comparación en un bosque de Araucaria araucana en Chile. Bosque, 31 (3): 179-194. [Fecha de Consulta 14 de Septiembre de 2021]. ISSN: 0304-8799. Disponible en: https://www.redalyc.org/articulo.oa?id=173118018002 .

Published

2021-12-17

How to Cite

Pedraza-Castillo, M., Alcalá-Salinas, C. A., Castillo, S. I., & Treviño-Uribe, J. J. (2021). Criterion for the validation of normality in small samples; parametric or nonparametric tests. Revista Interdisciplinaria De Ingeniería Sustentable Y Desarrollo Social, 7(1), 533–541. https://doi.org/10.63728/riisds.v7i1.214

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.