Criterion for the validation of normality in small samples; parametric or nonparametric tests
DOI:
https://doi.org/10.63728/riisds.v7i1.214Keywords:
normality test, parametric tests, nonparametric testsAbstract
Parametric studies start from the assumption that they come from a normal distribution, while nonparametric methods are the most immediate way to solve the problem of lack of normality in a sample. The objective of the study was to compare the parametric studies against the non-parametric ones in a general way, showing, on the one hand, the graphic technique that is used in parallel with the numerical methods technique for checking the normality of the sample and a comparative table with the characteristics of the two statistical methods. And on the other hand, a decision diagram to process the sample when it does not comply with normality. It was concluded that the application of the various parametric and non-parametric tests will depend on the characteristics of the variable under study, whether the proportion of the sample and the scale of measurement of the data is higher or lower.
References
Agresti, A. , & Franklin, C. (2013). Statistics: The Art and Scince of Learning from Data. Pearson, Boston. 834 p.
Brase, C. H. , & Brase, C. P. (2012). Understandable Statistics. Cengage Learning, Boston. 844 p.
Capuñay, C. V. (2011). Estadística para la administración y los negocios. Pearson, México D.F. 470 p.
Devore, J. L. (2016). Probability and Statistics for Engineering and Sciences. Cengage Learning, Boston. 794 p.
Deshpande, J. V. , & Nimbalkar, U. N. , & Dewan, I. (2018). Nonparametric Statistics: Theory and methods. World Scientific, Singapore. 275 p.
Hollander, M. , & Wolfe, D. A. , & Chicken, E. (2014). Nonparametric Statistical Methods. Wiley, New Jersey. 844 p.
Johnson, R. , & Kuby, P. (2012). Estadística Elemental. CENGAGE Learning, México D.F. 834 p.
Levin, R. I. , & Rubin, D. S. (2004). Estadística para Administración y Economía. Pearson, Edo. de México. 956 p.
Lind, D. A. , & Marchal, W. G. , & Wathen, S. A. (2008). Estadística aplicada a los negocios y la economía. McGraw-Hill, México. D.F. 886 p.
Mann, P. S. (2010). Introductory Statistics. Wiley, New Jersey. 750 p.
Mata, A. D. (2013). Estadística aplicada a la administración y la economía. McGraw-Hill, México D.F. 634 p.
Montgomery, D. C. , & Runger, G. C. (2018). Applied Statistics and Probability for Engineers. Wiley, New Jersey. 710 p.
Peña, D. (2014). Fundamentos de Estadística. Alianza Editorial, Madrid. 688 p.
Sampieri, R. H. , & Collado, C. F. , & Lucio, M. P. B. (2014). Metodología de la Investigación. McGraw-Hill, México D.F. 634 p.
Salas, Christian, & Ene, Liviu, & Ojeda, Nelson, & Soto, Hector (2010). Métodos estadísticos paramétricos y no paramétricos para predecir variables de rodal basados en Landsat ETM: una comparación en un bosque de Araucaria araucana en Chile. Bosque, 31 (3): 179-194. [Fecha de Consulta 14 de Septiembre de 2021]. ISSN: 0304-8799. Disponible en: https://www.redalyc.org/articulo.oa?id=173118018002 .
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Interdisciplinaria de Ingeniería Sustentable y Desarrollo Social

This work is licensed under a Creative Commons Attribution 4.0 International License.